The NASA-ADS Abstract Service provides a sophisticated search capability for the literature in Astronomy, Planetary Sciences, Physics/Geophysics, and Space Instrumentation. The ADS is funded by NASA and access to the ADS services is free to anybody worldwide without restrictions. It allows the user to search the literature by author, title, and abstract text. The ADS database contains over 3.6 million references, with 965,000 in the Astronomy/Planetary Sciences database, and 1.6 million in the Physics/Geophysics database. 2/3 of the records have full abstracts, the rest are table of contents entries (titles and author lists only). The coverage for the Astronomy literature is better than 95% from 1975. Before that we cover all major journals and many smaller ones. Most of the journal literature is covered back to volume 1. We now get abstracts on a regular basis from most journals. Over the last year we have entered basically all conference proceedings tables of contents that are available at the Harvard Smithsonian Center for Astrophysics library. This has greatly increased the coverage of conference proceedings in the ADS. The ADS also covers the ArXiv Preprints. We download these preprints every night and index all the preprints. They can be searched either together with the other abstracts or separately. There are currently about 260,000 preprints in that database. In January 2004 we have introduced two new services, full text searching and a personal notification service called "myADS". As all other ADS services, these are free to use for anybody.
The function of a non-protein-coding RNA is often determined by its structure. Since experimental determination of RNA structure is time-consuming and expensive, its computational prediction is of great interest, and efficient solutions based on thermodynamic parameters are known. Frequently, however, the predicted minimum free energy structures are not the native ones, leading to the necessity of generating suboptimal solutions. While this can be accomplished by a number of programs, the user is often confronted with large outputs of similar structures, although he or she is interested in structures with more fundamental differences, or, in other words, with different abstract shapes. Here, we formalize the concept of abstract shapes and introduce their efficient computation. Each shape of an RNA molecule comprises a class of similar structures and has a representative structure of minimal free energy within the class. Shape analysis is implemented in the program RNAshapes. We applied RNAshapes to the prediction of optimal and suboptimal abstract shapes of several RNAs. For a given energy range, the number of shapes is considerably smaller than the number of structures, and in all cases, the native structures were among the top shape representatives. This demonstrates that the researcher can quickly focus on the structures of interest, without processing up to thousands of near-optimal solutions. We complement this study with a large-scale analysis of the growth behaviour of structure and shape spaces. RNAshapes is available for download and as an online version on the Bielefeld Bioinformatics Server.
free download winning eleven 2013 ps2 iso
2ff7e9595c
Comments